

Ministerio de Ciencia, Tecnología e Innovación

Sustitución de Películas de Conversión a Base de Cromo en Acero **Galvanizado Mediante el Uso de Tierras Raras y Silanos: Evaluación** Electroquímica de su Desempeño Anticorrosivo Bastón, Candela¹, Deya, Cecilia^{1,2}, Banera, Mauro¹

1. Facultad de Ingeniería, UNLP, 1 y 47, CP 1900, La Plata, Argentina; 2. CIDEPINT, Centro de Investigación y Desarrollo en Tecnología de Pinturas (CICPBA-CONICET-UNLP) Av. 52 s/Nº entre 121 y 122. CP 1900, La Plata, Argentina. * Dirección de correo electrónico: <u>m.banera@cidepint.ing.unlp.edu.ar</u>

Las películas de conversión basadas en cromo hexavalente han sido ampliamente utilizadas en el acero galvanizado por su efectividad anticorrosiva, pero su toxicidad ha impulsado la búsqueda de alternativas sostenibles. Este trabajo explora un sistema de recubrimiento libre de cromo basado en nitrato de cerio y un silano funcionalizado

Evaluar la eficacia de películas de Ce y silano en acero galvanizado (HDG)

Introd

Experimental

mediante técnicas electroquímicas y análisis superficial.

Sustrato metálico

Acero galvanizado comercial Probetas: 50x20x0,65 mm

Pre-tratamiento

electroquímica limpieza en solución 10% p/p NaOH, 20 s, 25°C Limpieza con acetona

Tratamiento

 $Oightarrow Ce(NO_3)_3 \cdot 6H_2O$ reducción por potenciostática. **Tiempo**: 5 min ♦ Solución: 5 g/L de Ce(NO₃)₃ [3-(2,3con epoxipropoxi)-propil]-trietoxisilano (20% v/v).

♦ Curado a 100 °C por 1 h.

Ensayos

Polarización potenciodinámica Espectroscopía de
 impedancia electroquímica (EIS) ♦ Voltamperometría cíclica (CV) ♦ SEM/EDS para morfología y

composición

Muestra	Icorr (A)	Ecorr (V)	EP %
HDG	4,71E-06	-0,982	
HDG-Cr	1,25E-06	-0,958	73,4
HDG+Ce	7,69E-07	0,966	83,7
HDG-Si	7,26E-07	0,927	84,6
HDG-Ce-Si	5,54E-07	0,902	88,2

Tabla 1. Valores de potencial y corriente de corrosión obtenidos a partir de las curvas de polarización.

Figura	3 .	Circuito	equivalente
empleado	para	los ajustes	de EIS.

Muestra	Rs(Ω)	CPE1(S*s^n)	n1	R1(Ω)	CPE2(S*s^a)	n2	R2(Ω)
HDG	191,3	1,62E-05	0,78	1,31E+03	5,79E-03	0,92	5,80E+0
HDG-Ce	176,2	2,75E-05	0,66	2,68E+03	3,81E-03	0,89	8,58E+0
HDG-Si	174,8	2,37E-06	0,66	9,78E+02	7,26E-06	0,74	6,20E+0
HDG-Ce-Si	140,2	1,32E-06	0,71	1,18E+03	5,88E-06	0,66	8,26E+0
HDG-Cr	154,5	3,12E-06	0,78	6,57E+03	2,73E-04	0,88	4,94E+0

Tabla 2. Parámetros obtenidos de los ajuste de los datos de EIS

Muestra	Ip (A)	Q (C/cm ²)	FCR	
HDG	1,21E-03	2,68E-0	3—	
HDG Ce	4,28E-05	6,43E-0	5	0,9760
HDG Si	8,88E-06	4,25E-0	7	0,9998
Hdg Cr	5,10E-05	7,37E-0	5	0,9725
HDG Ce-Si				1,0000

Rs	Resistencia de la solución
CPE1	Capacitancia de la película de conversión
R1	Resistencia de la película de conversión
C1	Capacitancia de la doble capa electroquímica
R2	Resistencia a la transferencia de carga

Parámetros del circuito equivalente

el apoyo económico brindado

para la realización del

presente trabajo.

Resultados

Conclusiones

Figura 5. Imágenes SEM. Izq.: HGD sin tratamiento. Dcha.: HDG + recubrimiento de Cerio-Silano. Recuadro: Análisis EDS.

Tabla 4. Parámetros obtenidos de los ensayos de voltamperometria ciclica.

as

Referenci

 $(CeO_2).$

Sinergia Ce-Si: La combinación mejora la homogeneidad y resistencia del recubrimiento. Protección comparable al Cr(VI): Eficacia
 anticorrosiva cercana a tratamientos tradicionales, con menor toxicidad. Mecanismo: Barrera física (silano) + pasivación - Montemor, M. F. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology, 258, 17-37

- Zheludkevich, M. L., Tedim, J., & Ferreira, M. G. S. (2015). Smart coatings for corrosion protection of metallic materials. In Intelligent Coatings for Corrosion Control (pp. 3-28). Butterworth-Heinemann

- Figueira, R. B., Silva, C. J. R., & Pereira, E. V. (2015). Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: A review of recent progress. Journal of Coatings Technology and Research, 12(1), 1-35.